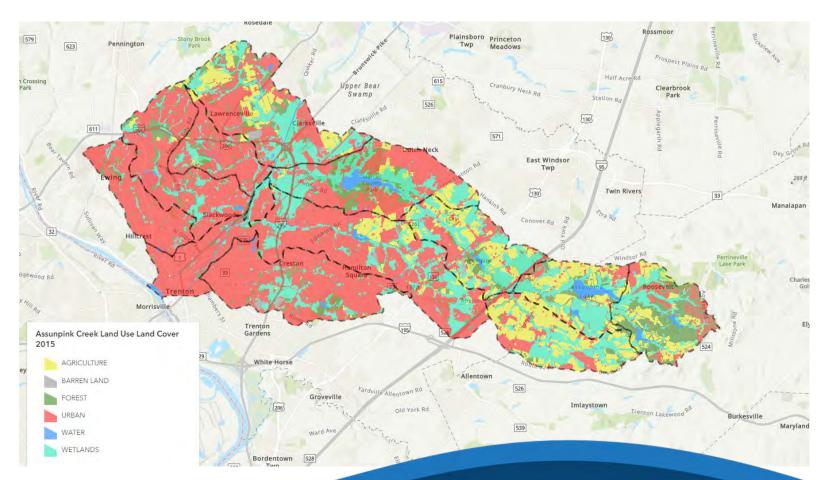
Assunpink Creek Watershed Towns A Regional Approach

Assunpink Working Group September 11, 2024

AGENDA for the 09/11/24 Assunpink Working Group


- 1. The Assunpink Watershed Regional WMP
 •Mike welcome & introductions
 •Susan introductory presentation
- 2.The Watershed Management Plan Proposal
 •Princeton Hydro presentation
 •Susan w/municipal benefits and participation
- 3.Where we are today•MS4 Timeline•Budgeting

3.Where do we go from here...

- Mike w/regulatory updates (REAL)
- Questions?

Our Assunpink Towns 11 Municipalities & 2 Counties (Mercer/Monmouth)

- Trenton
- Hamilton
- Ewing
- Robbinsville
- Hopewell Twp.
- Lawrence Twp
- West Windsor
- Upper Freehold
- East Windsor
- Roosevelt
- Millstone Twp.

The MS4 Goals for the Assunpink Creek Towns

IMPROVE WATER QUALITY TREAT AND REDUCE STORMWATER RUNOFF REDUCE FLOODING

The Tier A Municipal Stormwater General Permit authorizes the discharge of stormwater from small municipal separate storm sewers. The permit was issued in response to USEPA's phase II rules. The MS4 permit addresses stormwater quality issues related to both new and existing development. (NJ DEP website).

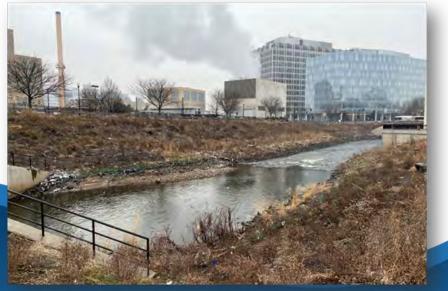
Image credit: BRS Inc. https://brsinc.com/projects/trenton-assunpinkgreenway/

The MS4 Permit Phases

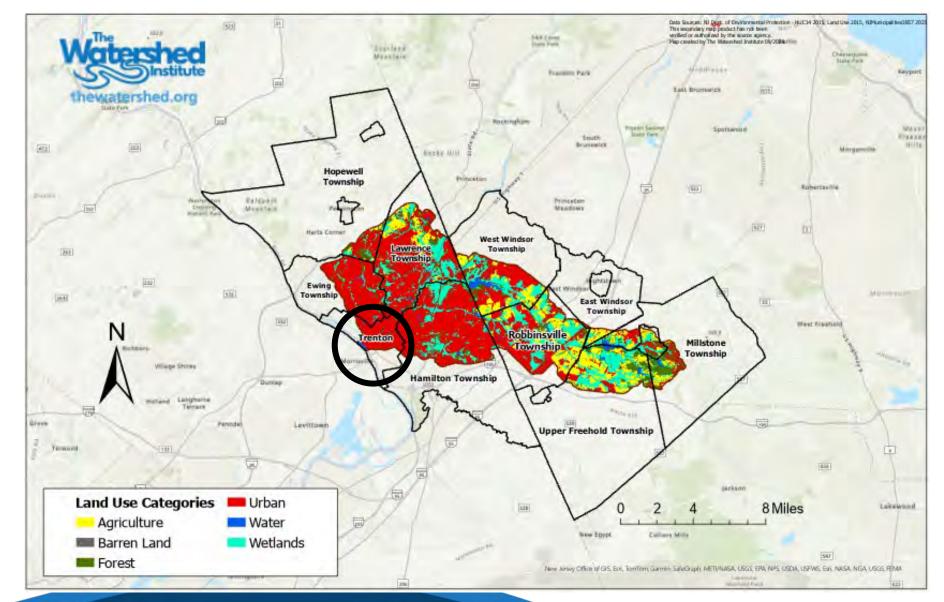
PHASE 1: Watershed Inventory Report: MAPPING

Due: End of 2025

- PHASE 2: Watershed Assessment Report: PLANNING Due: End of 2026
- PHASE 3: Watershed Improvement Plan (WIP): PROJECTS


Due: 2027

PHASE 3: The WIP Goals


A plan describing what projects municipalities will do to:

- 1. Improve water quality of water bodies that have TMDLs.
- 2. Improve water quality of water bodies that are listed as impaired.
- 3. Reduce or eliminate flooding

Mapping the Assunpink Creek Watershed over **Municipal Boundaries**

Municipal Impervious Cover within the AW

MUNI	TOTAL MUNI ACRES	ACRES of MUNI within IC ACRES of MUNI within Assunpink Watershed Assunpink Watershed		% of IC ACRES of MUNI within Assunpink Watershed	
EAST WINDSOR TWP	10019.22	513.56	33.30	0.23%	
EWING TWP	9956.73	5096.68	2209.68	15.54%	
HAMILTON TWP	25753.48	11490.63	4344.21	30.54%	
HOPEWELL TWP	37716.23	1581.01	351.75	2.47%	
LAWRENCE TWP	14063.22	11680.64	2969.26	20.88%	
MILLSTONE TWP	23800.22	3050.05	162.28	1.14%	
ROBBINSVILLE TWP	13167.99	10043.85	1521.29	10.70%	
ROOSEVELT BORO	1246.51	1046.69	72.23	0.51%	
TRENTON CITY	5272.96	2313.09	1619.52	11.39%	
UPPER FREEHOLD TWP	30311.22	6100.83	230.34	1.62%	
WEST WINDSOR TWP	16800.67	6281.47	709.45	4.99%	
Grand Total	188108.45	59198.51	14223.32	100%	

Proposed Watershed Framework: Create a 'Regional Watershed Management Plan'

MUNICIPAL TASKS

- Regional participants
- Consultant Proposal for Watershed Management Plan (WMP)
- Municipal portion % of work/cost
- WMP is used in your Muni WIP
- Public Education Outreach Points

CONSULTANT TASKS

- Evaluate TMDL and Impairments
- Develop BMP Alternative Matrix = <u>Proposed Projects</u>
- Complete Subwatershed Assessment
- Prepare Watershed Management Plan Report

MS4 Timeline : Since January 2023 Time to Budget for the WORK

Watershed Inventory Report: MAPPING

1 year/Phase 1

Watershed Assessment Report: PLANNING

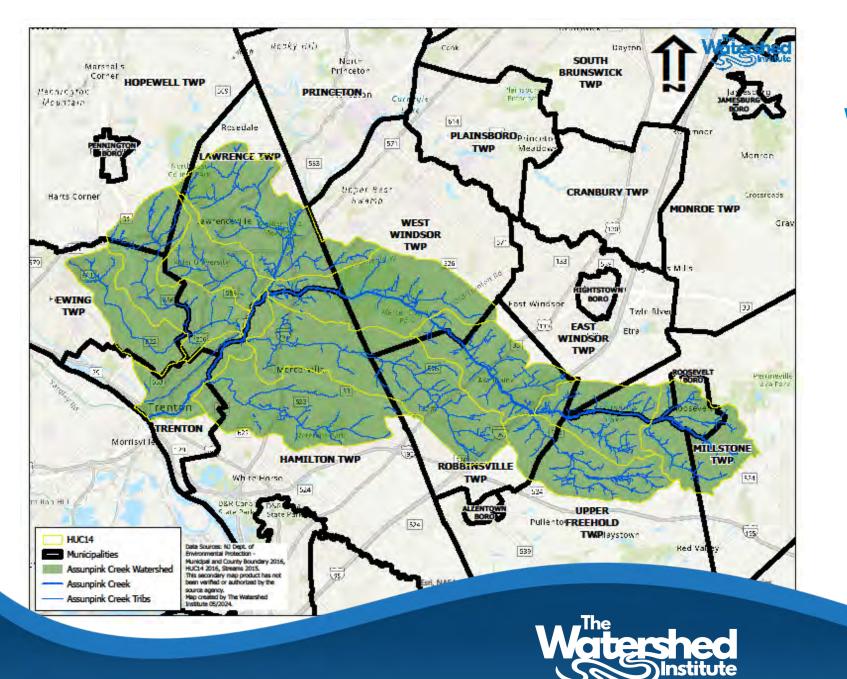
3 years/Phase 2

5 years/Phase 3

Watershed Improvement Plan: PROJECTS

DUE DATE: End of 2025

DUE DATE: End of 2026


DUE DATE: 2027

Benefits of a Regional Watershed-Based Approach

- Automatically identifying/addressing issues across municipal boundaries
- More efficient to study entire watershed (less \$, less time, better solutions)
- More effectively address EJ issues
- Coordinated efforts = less repeated work

Will your town join in a Regional Assunpink Watershed Management Plan/WMP?

Stormwater Management: NJ PACT REAL rule update

Stormwater-Volumetric Reduction

Reducing Volume- i.e. Flooding

Currently:

- Standards do not reduce volume.
- Increases volume.
- Reduces rate

Proposed:

- Retain on-site- 1.25' (WQDS) in 2 hours
- Use Green Infrastructure or
- Reduction of impervious surfaces

Stormwater: Reduces Redevelopment Loophole

Currently: sites may not have to address Quantity, Quality or Recharge

Proposed:

Must address Quality-

80% TSS removal/95% for C1

Nutrients to MEP

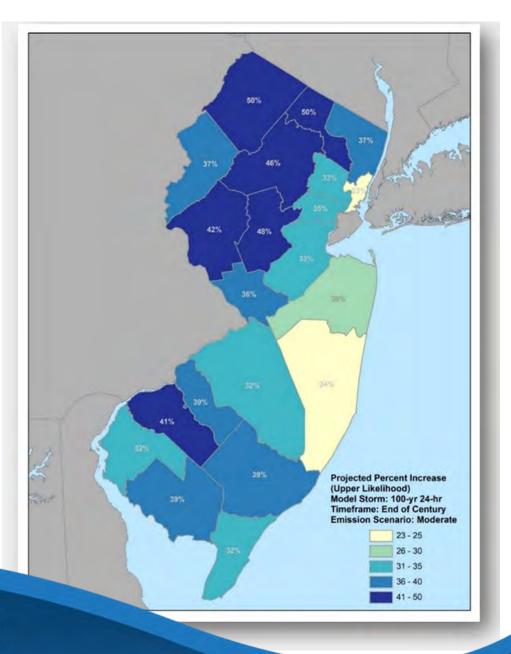
Incorporate- Volumetric Reduction Standard

Stormwater: Water Quality

Total Maximum Daily Loads or TMDLs must be addressed

Additional Measures in a TMDL must be incorporated into the project design.

Long Term Average	Upper Millstone River Watershed		Stony Brook Watershed		Carnegie Lake Direct Watershed				
Daily Load (kg/d TSS)	Existing Condition	TMDL Allocation	Percent Reduction	Existing Condition	TMDL Allocation	Percent Reduction	Existing Condition	TMDL Allocation	Percent Reduction
Sum of Wasteload Allocations (WLAs)	3,961	1,506	62.0%	2,286	401	82.5%	602	96	84.0%
Treated Effluent from WWTP Discharges [#]	502	953	-89.6%	20	38	-89.6%	0	0	0%
Stormwater from Residential Land Cover Areas	1,615	258	84.0%	1,529	245	84.0%	272	44	84.0%
Stormwater from Other Urban Land Cover Areas	1,843	295	84.0%	737	118	84.0%	329	53	84.0%
Sum of Load Allocations (LAs)	2,775	2,060	25.8%	2,624	1,328	49.4%	58	49	14.9%
Boundary Inputs	0	0	0.0%	0	0	0.0%	0	0	0.0%
Tributary Baseflow	1,267	1,267	0.0%	297	297	0.0%	29	29	0.0%
Stormwater from Agricultural Land Cover Areas	851	136	84.0%	1,543	247	84.0%	10	2	84.0%
Stormwater from Forest and Barren Land Cover Areas	51	51	0.0%	525	525	0.0%	6	6	0.0%
Stormwater from Wetlands Land Cover Areas	605	605	0.0%	260	260	0.0%	13	13	0.0%
Total Margin of Safety (% of LC)	n/a	172	4.5%	n/a	152	8.0%	n/a	24	14.4%
Reserve Capacity (% of WWTP load)	n/a	103	10.8%	n/a	25	66.5%	n/a	0	n/a
Loading Capacity (LC)	6,735	3,841	43.0%	4,909	1,906	61.2%	660	170	74.2%


* Although the TSS TMDL allocation is reflective of discharging up to current permitted flow and existing TGDPES permit TSS limits, the WLAs for total phosphorus effectively limit loadings due to TP being present in suspended solids in WWTP effluent. n/a - not applicable

Stormwater: Climate Change Resiliency

How does Sea Level Rise, Increased frequency of flooding; increase rainfall amounts, increased intensity, etc. impact stormwater management?

What can a Municipality do to address impacts to system?

Other Resources from The Watershed Institute 2025 Annual Conference: 02/21/25 – 'Resiliency through Restoration'

Flooding Navigating the Challenges Flooding and pollution in Central Jersey

ecember 2023 marked a recordbreaking level of minfall in Jersey, and while January 2024 didn't match the intensity, it still surpassed average precipitation. The ensuing floods were not solely attributed to extreme events, with nostorm exceeding the 2-year storm standard, or 3.3 inches, over 24 hours ai least in central New Jersey. Despite this, significant flooding. occurred, narticularly in northern Jersey, exemplified by Wayne with 5 inches of rain compared to Hillsborough's just over 3 inches during one of the storms.

The atorns, while not exceptionally powerful caused substantial flooding, evident in news reports and social media. Cars were stranded, roads closed, and debris. scattered, painting a wold picture of the challenges faced. Notalib, such incidents are becoming more frequent. indicating a concerning trend that demands attention.

Water Quality Concerns

Compounding the issue is water pollution resulting from land one practices. The 2022 Integrated Water Quality Assessment Report reveals a disconcerting reality; only 20% of monitored waters muct standards for supporting aquatic life, and a more 25% are clean enough for recruation. This underscores the urgency of addressing both flooding and water quality issues concurrently. The Integentral Water Quality Assessment Report is prepared by the DEP (NJ Department of Environmental Protection) every two years as required by the Indexal Clean Water Act. Regular flooding and pulliated waterways have become the new norm. This new of flooding and water (continues to build out cover, the rain has brook

beinging more and more rain to the Mater. The Climate

Mirrouil C. Pisairo Esg. Policy Director, The WatersAed Institute.

Change Scientific Report, released by the DEP in 2020. demonstrates that statewide New Jersey is receiving 46inches of rain a year. The methern and central portious of the state receive 49 inches while the coastal and southern areas receive 34 in 45 inches-As the amount of annual rainfall increases, extreme

weather events become more frequent. These trends are expected to continue with increased rain and more every stiations are not ad reduction the the more rain. in to go results in

Understanding NJPACT Real

Date: September 9, 2024 (7 p.m. EST)

'DAYLIGHTING' STREAMS: Design & Engineering

Date: October 4, 2024 at noon

Eliminating RSIS' Hold on Stormwater

Date: November 1, 2024 (12 p.m. EST)

https://thewatershed.org/professional-programs/

https://thewatershed.org/eight-annual-watershed-conference/

DANGER HARMFUL ALGAE BLOOM (HAB) PRESENT HIGH RISK-NO Contact or Ingestion (Humans and Animals) A confirmed Harmful Algal Bloom is present with levels quantified at or above the NJ Health Advisory Guidance.

THANK YOU

FOR CONSIDEIRNG A REGIONAL APPROACH TO IMPROVING OUR WATERSHEDS!

Learn more at thewatershed.org

Stay in touch: 609-737 3735 sbristol@thewatershed.org

theH2Oshed

theh2oshed

TheWatershedInstitute

